vqa_benchmarking_backend.datasets.GQADataset

Module Contents

Classes

GQADataSample

Class describing one data sample of the GQA dataset

GQADataset

Class describing the GQA dataset

Functions

preprocess_question(question: str) → List[str]

Remove punctuation and make everything lower case

load_img(path: str, transform=None) → numpy.ndarray

Load an image using module cv2

load_img_feats(path: str) → torch.FloatTensor

Load a numpy array containing image features

vqa_benchmarking_backend.datasets.GQADataset.preprocess_question(question: str) List[str]

Remove punctuation and make everything lower case

vqa_benchmarking_backend.datasets.GQADataset.load_img(path: str, transform=None) numpy.ndarray

Load an image using module cv2

vqa_benchmarking_backend.datasets.GQADataset.load_img_feats(path: str) torch.FloatTensor

Load a numpy array containing image features

class vqa_benchmarking_backend.datasets.GQADataset.GQADataSample(question_id: str, question: str, answers: Dict[str, float], image_id: str, image_path: str, image_feat_path: str, image_transform=None)

Bases: vqa_benchmarking_backend.datasets.dataset.DataSample

Class describing one data sample of the GQA dataset Inheriting from DataSample

property image(self) numpy.ndarray

Returns the image, if not present it loads it from self._image_path

property question_tokenized(self) List[str]

Returns tokenized question

__str__(self)

Stringify object

class vqa_benchmarking_backend.datasets.GQADataset.GQADataset(question_file: str, img_dir, img_feat_dir, idx2ans, name, transform=None, load_img_features=False)

Bases: vqa_benchmarking_backend.datasets.dataset.DiagnosticDataset

Class describing the GQA dataset Inheriting from DiagnosticDataset

_load_data(self, question_file: str) Tuple[List[vqa_benchmarking_backend.datasets.dataset.DataSample], Dict[str, vqa_benchmarking_backend.datasets.dataset.DataSample], vqa_benchmarking_backend.utils.vocab.Vocabulary, vqa_benchmarking_backend.utils.vocab.Vocabulary]

Loads data from GQA json files Returns:

  • data: list of GQADataSample

  • qid_to_sample: mapping of question id to data sample

  • question_vocab: Vocabulary of all unique words occuring in the data

  • answer_vocab: Vocabulary of all unique answers

__getitem__(self, index) vqa_benchmarking_backend.datasets.dataset.DataSample

Returns a data sample

label_from_class(self, class_index: int) str

Get the answer string of a given class index

word_in_vocab(self, word: str) bool

Checks if a word occured inside the Vocabulary dervied of all questions

__len__(self)

Returns the length of the GQADataset as in self.data

get_name(self) str

Returns the name of the dataset, required for file caching

index_to_question_id(self, index) str

Get the index of a specific question id

class_idx_to_answer(self, class_idx: int) Union[str, None]

Get the answer string for a given class index from the self.idx2ans dictionary