:mod:`vqa_benchmarking_backend.datasets.GQADataset` =================================================== .. py:module:: vqa_benchmarking_backend.datasets.GQADataset Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: vqa_benchmarking_backend.datasets.GQADataset.GQADataSample vqa_benchmarking_backend.datasets.GQADataset.GQADataset Functions ~~~~~~~~~ .. autoapisummary:: vqa_benchmarking_backend.datasets.GQADataset.preprocess_question vqa_benchmarking_backend.datasets.GQADataset.load_img vqa_benchmarking_backend.datasets.GQADataset.load_img_feats .. function:: preprocess_question(question: str) -> List[str] Remove punctuation and make everything lower case .. function:: load_img(path: str, transform=None) -> numpy.ndarray Load an image using module ``cv2`` .. function:: load_img_feats(path: str) -> torch.FloatTensor Load a numpy array containing image features .. class:: GQADataSample(question_id: str, question: str, answers: Dict[str, float], image_id: str, image_path: str, image_feat_path: str, image_transform=None) Bases: :py:obj:`vqa_benchmarking_backend.datasets.dataset.DataSample` Class describing one data sample of the GQA dataset Inheriting from ``DataSample`` .. method:: image(self) -> numpy.ndarray :property: Returns the image, if not present it loads it from ``self._image_path`` .. method:: question_tokenized(self) -> List[str] :property: Returns tokenized question .. method:: __str__(self) Stringify object .. class:: GQADataset(question_file: str, img_dir, img_feat_dir, idx2ans, name, transform=None, load_img_features=False) Bases: :py:obj:`vqa_benchmarking_backend.datasets.dataset.DiagnosticDataset` Class describing the GQA dataset Inheriting from ``DiagnosticDataset`` .. method:: _load_data(self, question_file: str) -> Tuple[List[vqa_benchmarking_backend.datasets.dataset.DataSample], Dict[str, vqa_benchmarking_backend.datasets.dataset.DataSample], vqa_benchmarking_backend.utils.vocab.Vocabulary, vqa_benchmarking_backend.utils.vocab.Vocabulary] Loads data from GQA json files Returns: * data: list of ``GQADataSample`` * qid_to_sample: mapping of question id to data sample * question_vocab: ``Vocabulary`` of all unique words occuring in the data * answer_vocab: ``Vocabulary`` of all unique answers .. method:: __getitem__(self, index) -> vqa_benchmarking_backend.datasets.dataset.DataSample Returns a data sample .. method:: label_from_class(self, class_index: int) -> str Get the answer string of a given class index .. method:: word_in_vocab(self, word: str) -> bool Checks if a word occured inside the ``Vocabulary`` dervied of all questions .. method:: __len__(self) Returns the length of the GQADataset as in self.data .. method:: get_name(self) -> str Returns the name of the dataset, required for file caching .. method:: index_to_question_id(self, index) -> str Get the index of a specific question id .. method:: class_idx_to_answer(self, class_idx: int) -> Union[str, None] Get the answer string for a given class index from the ``self.idx2ans`` dictionary