vqa_benchmarking_backend.metrics.uncertainty

Module Contents

Functions

certainty(dataset: vqa_benchmarking_backend.datasets.dataset.DiagnosticDataset, adapter: vqa_benchmarking_backend.datasets.dataset.DatasetModelAdapter, sample: vqa_benchmarking_backend.datasets.dataset.DataSample, trials: int = 15) → Tuple[Dict[int, float], Dict[int, float], float]

Monte-Carlo uncertainty: predict on same sample num_iters times with different dropouts -> measure how often prediction rank changes

vqa_benchmarking_backend.metrics.uncertainty.certainty(dataset: vqa_benchmarking_backend.datasets.dataset.DiagnosticDataset, adapter: vqa_benchmarking_backend.datasets.dataset.DatasetModelAdapter, sample: vqa_benchmarking_backend.datasets.dataset.DataSample, trials: int = 15) Tuple[Dict[int, float], Dict[int, float], float]

Monte-Carlo uncertainty: predict on same sample num_iters times with different dropouts -> measure how often prediction rank changes

Returns:

Tuple: * Mapping from best prediction class -> fraction of total predictions * Mapping from best prediction class -> certainty score in range [0,1] * Entropy