Use integrated Datasets ======================= We built in a few datasets that can be used out-of-the-box, namely CLEVR, GQA, TextVQA and VQA2. These ``PyTorch`` datasets can used to load any dataset that follows the same structure or format. As an example, the OK-VQA dataset can be loaded using our ``VQADataset`` , and the GQA-OOD using our ``GQADataset`` . .. code-block:: python from vqa_benchmarking_backend.datasets.GQADataset import GQADataset from vqa_benchmarking_backend.datasets.TextVQADataset import TextVQADataset from vqa_benchmarking_backend.datasets.VQADataset import VQADataset from vqa_benchmarking_backend.datasets.CLEVRDataset import CLEVRDataset # insert required paths # Vanilla GQA dataset gqa_dataset = GQADataset(question_file=qsts_path, img_dir= img_dir, img_feat_dir='', idx2ans=all_indices, name='GQA') # GQA-OOD splits gqa_dataset_odd_all = GQADataset(question_file=gqa_ood_testdev_all, img_dir= img_dir, img_feat_dir='', idx2ans=all_indices, name='GQA-OOD-ALL') gqa_dataset_odd_head = GQADataset(question_file=gqa_ood_testdev_head, img_dir= img_dir, img_feat_dir='', idx2ans=all_indices, name='GQA-OOD-HEAD') gqa_dataset_odd_tail = GQADataset(question_file=gqa_ood_testdev_tail, img_dir= img_dir, img_feat_dir='', idx2ans=all_indices, name='GQA-OOD-TAIL') # TextVQA dataset textvqa_dataset = TextVQADataset(question_file=text_vqa_qsts_path, img_dir=text_vqa_imgs_path, img_feat_dir='', idx2ans=all_indices) # CLEVR dataset clevr_dataset = CLEVRDataset(question_file=clevr_qsts_path, img_dir=clevr_img_dir, img_feat_dir='', idx2ans=all_indices) # Vanilla VQA2 dataset vqav2_dataset = VQADataset( val_question_file=vqav2_qsts_path, val_annotation_file=vqav2_anno_path, answer_file=all_indices, img_dir=vqav2_img_dir, name='VQA2' ) # OK-VQA using VQADataset okvqa_dataset = VQADataset( val_question_file=ok_vqa_qsts_path, val_annotation_file=ok_vqa_anno_path, answer_file=all_indices, img_dir=ok_vqa_imgs_path, name='OK-VQA', dataset_fraction=1.0 )