:mod:`vqa_benchmarking_backend.metrics.sear` ============================================ .. py:module:: vqa_benchmarking_backend.metrics.sear Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: vqa_benchmarking_backend.metrics.sear._apply_SEAR_1 vqa_benchmarking_backend.metrics.sear._apply_SEAR_2 vqa_benchmarking_backend.metrics.sear._apply_SEAR_3 vqa_benchmarking_backend.metrics.sear._apply_SEAR_4 vqa_benchmarking_backend.metrics.sear.inputs_for_question_sears vqa_benchmarking_backend.metrics.sear.eval_sears .. function:: _apply_SEAR_1(question_postagged: List[Tuple[str, str]]) SEAR 1: WP VBZ -> WP's .. function:: _apply_SEAR_2(question_postagged: List[Tuple[str, str]]) SEAR 2: What NOUN -> Which NOUN .. function:: _apply_SEAR_3(question_tokenized: List[str]) SEAR 3: color -> colour .. function:: _apply_SEAR_4(question_postagged: List[Tuple[str, str]]) SEAR 4: ADV VBZ -> ADV's .. function:: inputs_for_question_sears(current_sample: vqa_benchmarking_backend.datasets.dataset.DataSample) -> Tuple[Union[vqa_benchmarking_backend.datasets.dataset.DataSample, None], Union[vqa_benchmarking_backend.datasets.dataset.DataSample, None], Union[vqa_benchmarking_backend.datasets.dataset.DataSample, None], Union[vqa_benchmarking_backend.datasets.dataset.DataSample, None]] Creates inputs where semantically equivalent changes are applied to the input questions Returns: A tuple with 4 entries of either type `DataSample` or with value `None`. 1st entry corresponds to SEAR 1, 2nd entry to SEAR 2, ... . Note: if a value in the tuple at index `i` is `None`, that means that SEAR `i` is not applicable. .. function:: eval_sears(dataset: vqa_benchmarking_backend.datasets.dataset.DiagnosticDataset, sear_inputs: Tuple[Union[vqa_benchmarking_backend.datasets.dataset.DataSample, None], Union[vqa_benchmarking_backend.datasets.dataset.DataSample, None], Union[vqa_benchmarking_backend.datasets.dataset.DataSample, None], Union[vqa_benchmarking_backend.datasets.dataset.DataSample, None]], sear_predictions: Tuple[Union[torch.FloatTensor, None]], original_class_prediction: str) -> Dict[str, dict] Evalutate predictions generated with `inputs_for_question_sears`. Args: sear_inputs: the 4 outputs generated by `inputs_for_question_sears` predictions List[(1 x answer space)] of length 4: Model predictions for SEAR questions or None if SEAR input was None. (probabilities) Returns: dictionary with information per sear, e.g. sear_4: { 'predicted_class': 10, 'flipped': False, 'applied': True }