:mod:`vqa_benchmarking_backend.datasets.dataset` ================================================ .. py:module:: vqa_benchmarking_backend.datasets.dataset Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: vqa_benchmarking_backend.datasets.dataset.DataSample vqa_benchmarking_backend.datasets.dataset.DiagnosticDataset vqa_benchmarking_backend.datasets.dataset.DatasetModelAdapter .. class:: DataSample(question_id: str, question: str, answers: Dict[str, float], image_id: str, image_path: str, image_feat_path: str, image_transform=None) Superclass for data samples .. method:: question_id(self) -> str :property: Returns: Question id as a string. .. method:: question(self) -> str :property: Returns: Original question as string. .. method:: answers(self) -> Dict[str, float] :property: Returns: A mapping from each answer (ground truth) as string to the respecive score. E.g. if you have only one answer per question, the score is 1.0 and the return value might look like this: {'yellow': 1.0} But if you have multiple possible answers per question, some answers might be better (e.g. higher inter-annotator agreement, like in VQA2): {'yellow': 0.9, 'gold': 0.1} .. method:: image_id(self) -> str :property: Returns: Image identifier as string. Neccessary for loading the corresponding image for this question-image pair later. .. method:: image(self) -> numpy.ndarray :property: Returns: Image data as numpy array, e.g. load using the pillow library or opencv. NOTE: This property has to be overriden to load your custom image data. .. method:: image_features(self) -> Union[torch.FloatTensor, None] :property: Returns: Processed image features as float tensor. Recommended assignment in the vqa_benchmarking_backend.datasets.dataset.ModelAdapter.get_image_embedding method. .. method:: question_tokenized(self) -> List[str] :property: Returns: Tokenized version of the original question. .. method:: question_features(self) -> Union[None, torch.FloatTensor] :property: Returns: Processed question features / embedding as float tensor. Recommended assignment in the vqa_benchmarking_backend.datasets.dataset.ModelAdapter.get_question_embedding method. .. class:: DiagnosticDataset Bases: :py:obj:`torch.utils.data.dataset.Dataset` Superclass for custom datasets, inheriting from original pytorch dataset class. Thus, the same functions like `__len__` and `__getitem__` have to be overwritten as in any pytorch dataset with index-based access. Check the pytorch documentation for more details. .. method:: __len__(self) :abstractmethod: Returns size of dataset (how many samples). NOTE: has to be overridden! .. method:: __getitem__(self, index) -> DataSample :abstractmethod: Returns a single data sample. NOTE: has to be overridden! .. method:: get_name(self) -> str :abstractmethod: Required for file caching, e.g. naming databases and displaying corresponding entries in the webapp. NOTE: has to be overridden! .. method:: class_idx_to_answer(self, class_idx: int) -> str :abstractmethod: Returns: Natural language answer from a class index. NOTE: has to be overridden! .. class:: DatasetModelAdapter Superclass for model adapters. When inheriting from this class, make sure to * move the model to the intended device * move the data to the intended device inside the _forward method .. method:: get_name(self) -> str :abstractmethod: Required for file caching, e.g. naming databases and displaying corresponding entries in the webapp. NOTE: has to be overridden! .. method:: get_output_size(self) -> int :abstractmethod: Size of answer space. NOTE: has to be overridden! .. method:: get_torch_module(self) -> torch.nn.Module :abstractmethod: Return the pytorch VQA model NOTE: has to be overridden! .. method:: train(self) Set VQA model to train mode (for MC Uncertainty) .. method:: eval(self) Set VQA model to eval mode .. method:: get_question_embedding(self, sample: DataSample) -> torch.FloatTensor :abstractmethod: Embed questions without full model forward-pass. NOTE: has to be overridden! .. method:: get_image_embedding(self, sample: DataSample) -> torch.FloatTensor :abstractmethod: Embed image without full model forward-pass. NOTE: has to be overridden! .. method:: _forward(self, samples: List[DataSample]) -> torch.FloatTensor :abstractmethod: Overwrite this function to transform a list of samples to fit your VQA model's required input format. IMPORTANT: * Make sure that the outputs are probabilities, not logits! * Make sure that the data samples are using the samples' question embedding field, if assigned (instead of re-calculating them, they could be modified from feature space methods) * Make sure that the data samples are moved to the intended device here .. method:: forward(self, samples: List[DataSample]) -> torch.FloatTensor Return samples x classes results AS PROBABILITIES