:mod:`vqa_benchmarking_backend.datasets.VQADataset` =================================================== .. py:module:: vqa_benchmarking_backend.datasets.VQADataset Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: vqa_benchmarking_backend.datasets.VQADataset.VQADataSample vqa_benchmarking_backend.datasets.VQADataset.VQADataset Functions ~~~~~~~~~ .. autoapisummary:: vqa_benchmarking_backend.datasets.VQADataset.preprocess_question vqa_benchmarking_backend.datasets.VQADataset.load_img vqa_benchmarking_backend.datasets.VQADataset.load_img_feats vqa_benchmarking_backend.datasets.VQADataset.preprocess_answer vqa_benchmarking_backend.datasets.VQADataset.answer_score .. function:: preprocess_question(question: str) -> List[str] Removes punctuation and make everything lower case .. function:: load_img(path: str, transform=None) -> numpy.ndarray Loads an image using module ``cv2`` .. function:: load_img_feats(path: str) -> torch.FloatTensor Loads a numpy array containing image features .. function:: preprocess_answer(answer: str) -> str Removes punctuation .. function:: answer_score(num_humans) -> float Calculates VQA score in [0,1] depending on number of humans having given the same answer .. class:: VQADataSample(question_id: str, question: str, answers: Dict[str, float], image_id: str, image_path: str, image_feat_path: str, image_transform=None) Bases: :py:obj:`vqa_benchmarking_backend.datasets.dataset.DataSample` Class describing one data sample of the VQA2 dataset Inheriting from ``DataSample`` .. method:: image(self) -> numpy.ndarray :property: Returns the image, if not present it loads it from ``self._image_path`` .. method:: question_tokenized(self) -> List[str] :property: Returns tokenized question .. method:: question(self) -> str :property: Returns full question .. class:: VQADataset(val_question_file: str, val_annotation_file: str, answer_file: str, img_dir, img_feat_dir, name: str, transform=None, load_img_features=False, dataset_fraction: float = 0.05, random_seed: int = 12345) Bases: :py:obj:`vqa_benchmarking_backend.datasets.dataset.DiagnosticDataset` Class describing the VQA2 dataset Inheriting from ``DiagnosticDataset`` .. method:: __len__(self) .. method:: _load_data(self, question_file: str, annotation_file: str, dataset_fraction: float, random_seed: int) -> Tuple[List[vqa_benchmarking_backend.datasets.dataset.DataSample], Dict[str, vqa_benchmarking_backend.datasets.dataset.DataSample], vqa_benchmarking_backend.utils.vocab.Vocabulary, vqa_benchmarking_backend.utils.vocab.Vocabulary] Loads data from VQA json files Returns: * data: list of ``VQADataSample`` * qid_to_sample: mapping of question id to data sample * question_vocab: ``Vocabulary`` of all unique words occuring in the data * answer_vocab: ``Vocabulary`` of all unique answers .. method:: __getitem__(self, index) -> vqa_benchmarking_backend.datasets.dataset.DataSample Returns a data sample .. method:: get_name(self) -> str Returns the name of the dataset, required for file caching .. method:: class_idx_to_answer(self, class_idx: int) -> Union[str, None] Get the answer string for a given class index from the ``self.idx2ans`` dictionary